Acyl-CoA 6-desaturase

Involved in the biosynthesis of highly unsaturated fatty acids (HUFA) from the essential polyunsaturated fatty acids (PUFA) linoleic acid (LA) (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3) precursors, acting as a fatty acyl-coenzyme A (CoA) desaturase that introduces a cis double bond at carbon 6 of the fatty acyl chain. Catalyzes the first and rate limiting step in this pathway which is the desaturation of LA (18:2n-6) and ALA (18:3n-3) into gamma-linoleate (GLA) (18:3n-6) and stearidonate (18:4n-3), respectively. Subsequently, in the biosynthetic pathway of HUFA n-3 series, it desaturates tetracosapentaenoate (24:5n-3) to tetracosahexaenoate (24:6n-3), which is then converted to docosahexaenoate (DHA)(22:6n-3), an important lipid for nervous system function (By similarity). Desaturates hexadecanate (palmitate) to produce 6Z-hexadecenoate (sapienate), a fatty acid unique to humans and major component of human sebum, that has been implicated in the development of acne and may have potent antibacterial activity. It can also desaturate (11E)-octadecenoate (trans-vaccenoate, the predominant trans fatty acid in human milk) at carbon 6 generating (6Z,11E)-octadecadienoate (By similarity). In addition to Delta-6 activity, this enzyme exhibits Delta-8 activity with slight biases toward n-3 fatty acyl-CoA substrates (By similarity).

PDB Code:
Native
Stable
Pure
Active protein
Recombinant protein
Human Origin
Entry name:
FADS2_HUMAN
Gene name:
FADS2
Uniprot accession:
O95864
Origin:
Homo sapiens (Human)
Protein family:
Fatty acid desaturase type 1
Full-length:
444
Mass:
52259
Sequence:
MGKGGNQGEGAAEREVSVPTFSWEEIQKHNLRTDRWLVIDRKVYNITKWSIQHPGGQRVIGHYAGEDATDAFRAFHPDLEFVGKFLKPLLIGELAPEEPSQDHGKNSKITEDFRALRKTAEDMNLFKTNHVFFLLLLAHIIALESIAWFTVFYFGNGWIPTLITAFVLATSQAQAGWLQHDYGHLSVYRKPKWNHLVHKFVIGHLKGASANWWNHRHFQHHAKPNIFHKDPDVNMLHVFVLGEWQPIEYGKKKLKYLPYNHQHEYFFLIGPPLLIPMYFQYQIIMTMIVHKNWVDLAWAVSYYIRFFITYIPFYGILGALLFLNFIRFLESHWFVWVTQMNHIVMEIDQEAYRDWFSSQLTATCNVEQSFFNDWFSGHLNFQIEHHLFPTMPRHNLHKIAPLVKSLCAKHGIEYQEKPLLRALLDIIRSLKKSGKLWLDAYLHK
CALIXAR fits your needs

Expression systems: bacteria, yeast, insect cells, HEK & CHO mammalian cells
Purified formats: detergents, SMALPs, nanodiscs, proteoliposomes

Secure and boost
your discovery programs.

Starting from native material or recombinant systems, we succeed with all types of membrane proteins: GPCRs, Ion Channels, Transporters, Receptors and Viral Proteins.