Inward rectifier potassium channel 13

Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependence of its inward rectification properties on the internal blocking particle magnesium.

PDB Code:
Native
Stable
Pure
Active protein
Recombinant protein
Human Origin
Entry name:
KCJ13_HUMAN
Gene name:
KCNJ13
Uniprot accession:
O60928
Origin:
Homo sapiens (Human)
Protein family:
Inward rectifier-type potassium channel (TC 1.A.2.1), KCNJ13 subfamily
Full-length:
360
Mass:
40530
Sequence:
MDSSNCKVIAPLLSQRYRRMVTKDGHSTLQMDGAQRGLAYLRDAWGILMDMRWRWMMLVFSASFVVHWLVFAVLWYVLAEMNGDLELDHDAPPENHTICVKYITSFTAAFSFSLETQLTIGYGTMFPSGDCPSAIALLAIQMLLGLMLEAFITGAFVAKIARPKNRAFSIRFTDTAVVAHMDGKPNLIFQVANTRPSPLTSVRVSAVLYQERENGKLYQTSVDFHLDGISSDECPFFIFPLTYYHSITPSSPLATLLQHENPSHFELVVFLSAMQEGTGEICQRRTSYLPSEIMLHHCFASLLTRGSKGEYQIKMENFDKTVPEFPTPLVSKSPNRTDLDIHINGQSIDNFQISETGLTE
CALIXAR fits your needs

Expression systems: bacteria, yeast, insect cells, HEK & CHO mammalian cells
Purified formats: detergents, SMALPs, nanodiscs, proteoliposomes

Secure and boost
your discovery programs.

Starting from native material or recombinant systems, we succeed with all types of membrane proteins: GPCRs, Ion Channels, Transporters, Receptors and Viral Proteins.