Insulin-induced gene 1 protein

Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR. Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2. Binds oxysterol, including 25-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum. In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi. Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG1 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2. Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligases AMFR/gp78 and/or RNF139. Also regulates degradation of SOAT2/ACAT2 when the lipid levels are low: initiates the ubiquitin-mediated degradation of SOAT2/ACAT2 via recruitment of the ubiquitin ligases AMFR/gp78.

PDB Code:
Native
Stable
Pure
Active protein
Recombinant protein
Human Origin
Entry name:
INSI1_HUMAN
Gene name:
INSIG1
Uniprot accession:
O15503
Origin:
Homo sapiens (Human)
Protein family:
INSIG
Full-length:
277
Mass:
29987
Sequence:
MPRLHDHFWSCSCAHSARRRGPPRASAAGLAAKVGEMINVSVSGPSLLAAHGAPDADPAPRGRSAAMSGPEPGSPYPNTWHHRLLQRSLVLFSVGVVLALVLNLLQIQRNVTLFPEEVIATIFSSAWWVPPCCGTAAAVVGLLYPCIDSHLGEPHKFKREWASVMRCIAVFVGINHASAKLDFANNVQLSLTLAALSLGLWWTFDRSRSGLGLGITIAFLATLITQFLVYNGVYQYTSPDFLYIRSWLPCIFFSGGVTVGNIGRQLAMGVPEKPHSD
CALIXAR fits your needs

Expression systems: bacteria, yeast, insect cells, HEK & CHO mammalian cells
Purified formats: detergents, SMALPs, nanodiscs, proteoliposomes

Secure and boost
your discovery programs.

Starting from native material or recombinant systems, we succeed with all types of membrane proteins: GPCRs, Ion Channels, Transporters, Receptors and Viral Proteins.