Novel innovative detergent family for MP extraction and stabilization

September 6, 2019

This work highlights the synthesis and biochemical evaluation of novel Hybrid Double-Chain Maltose-Based Detergents for membrane protein extraction and stabilization (Bonnet C. et al., 2019, J. Org Chem).

Four hybrid double-chain surfactants with a maltose polar head were synthesized. The apolar domain consists of a hydrogenated chain, and a partially fluorinated chain made of a propyl hydrogenated spacer terminated by a perfluorinated core of various lengths. Their water solubility was found to be lower than 1 g/L irrespective of the length of both chains. The self-assembling properties of pure hybrids in water were studied by dynamic light scattering and transmission electron microscopy, which revealed the formation of two populations of aggregates with diameters of 8−50 nm and 80−300 nm.

When mixed with the classical detergent n-dodecylmaltoside (DDM), the four hybrids were well soluble and formed small mixed micelles. DDM/hybrid mixtures were further evaluated for the extraction of the full-length, wild-type human GPCR adenosine receptor (A2AR), and the bacterial transporter AcrB. The solubilization of A2AR showed extraction efficiencies ranging from 40 to 70%, while that of AcrB reached 60−90%. Finally, three of the hybrids exhibited significant thermostabilization when present as additives. The derivative with a C12-hydrogenated chain and a C4F9-fluorinated chain emerged as the most potent additive exhibiting both good extraction yields of A2AR and AcrB and thermostabilization of A2AR by ∼7 °C.

Request more information

Share this post

Secure and boost
your discovery programs

Starting from native material or recombinant systems, we succeed with all types of proteins: Kinases, Phosphatases, Ubiquitins, Epigenetic Proteins, GPCRs, Ion Channels, Transporters, Receptors and Viral Proteins.