Potassium voltage-gated channel subfamily KQT member 2

Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. KCNQ2/KCNQ3 current is blocked by linopirdine and XE991, and activated by the anticonvulsant retigabine. As the native M-channel, the potassium channel composed of KCNQ2 and KCNQ3 is also suppressed by activation of the muscarinic acetylcholine receptor CHRM1.

PDB Code:
Native
Stable
Pure
Active protein
Recombinant protein
Human Origin
Entry name:
KCNQ2_HUMAN
Gene name:
KCNQ2
Uniprot accession:
O43526
Origin:
Homo sapiens (Human)
Protein family:
Potassium channel, KQT (TC 1.A.1.15) subfamily, Kv7.2/KCNQ2 sub-subfamily
Full-length:
872
Mass:
95848
Sequence:
MVQKSRNGGVYPGPSGEKKLKVGFVGLDPGAPDSTRDGALLIAGSEAPKRGSILSKPRAGGAGAGKPPKRNAFYRKLQNFLYNVLERPRGWAFIYHAYVFLLVFSCLVLSVFSTIKEYEKSSEGALYILEIVTIVVFGVEYFVRIWAAGCCCRYRGWRGRLKFARKPFCVIDIMVLIASIAVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLGSVVYAHSKELVTAWYIGFLCLILASFLVYLAEKGENDHFDTYADALWWGLITLTTIGYGDKYPQTWNGRLLAATFTLIGVSFFALPAGILGSGFALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATNLSRTDLHSTWQYYERTVTVPMYSSQTQTYGASRLIPPLNQLELLRNLKSKSGLAFRKDPPPEPSPSKGSPCRGPLCGCCPGRSSQKVSLKDRVFSSPRGVAAKGKGSPQAQTVRRSPSADQSLEDSPSKVPKSWSFGDRSRARQAFRIKGAASRQNSEEASLPGEDIVDDKSCPCEFVTEDLTPGLKVSIRAVCVMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLDMLSRIKSLQSRVDQIVGRGPAITDKDRTKGPAEAELPEDPSMMGRLGKVEKQVLSMEKKLDFLVNIYMQRMGIPPTETEAYFGAKEPEPAPPYHSPEDSREHVDRHGCIVKIVRSSSSTGQKNFSAPPAAPPVQCPPSTSWQPQSHPRQGHGTSPVGDHGSLVRIPPPPAHERSLSAYGGGNRASMEFLRQEDTPGCRPPEGNLRDSDTSISIPSVDHEELERSFSGFSISQSKENLDALNSCYAAVAPCAKVRPYIAEGESDTDSDLCTPCGPPPRSATGEGPFGDVGWAGPRK
CALIXAR fits your needs

Expression systems: bacteria, yeast, insect cells, HEK & CHO mammalian cells
Purified formats: detergents, SMALPs, nanodiscs, proteoliposomes

Secure and boost
your discovery programs.

Starting from native material or recombinant systems, we succeed with all types of membrane proteins: GPCRs, Ion Channels, Transporters, Receptors and Viral Proteins.